1 (a)

	copper	iron	sulphur	
composition by mass/g	(4.80)		4.8	[1]
number of moles of atoms	0.075		0.15	[1]
simplest mole ratio of atoms	1		2	[1]

The empirical formula is CuFeS_{2}
(b) impure copper/blister copper/boulder copper etc (pure) copper
copper sulphate or nitrate or chloride or contains $\mathrm{Cu}^{2+} \mathrm{aq}$
(ii) $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-}=\mathrm{Cu}$
(iii) Zinc
(c) Copper has delocalised electrons

In sulphur the electrons are localised or cannot move in the piece of sulphur
In copper there are layers of copper atoms/ions
Which can slip
[1]
In sulphur there are no layers

2 (a) (i) Correct equation with a more reactive metal
(ii) Electron loss
(iii) Because they can accept electrons or take electrons away from.......
(iv) Silver or silver(I)
(b) increase
(ii) zinc

COND and a correct reason - such as it loses electrons more easily or it is more reactive
Need both zinc and reason for the mark.
(iii)from the more reactive to the less reactive NOT just from zinc to lead

3 (a) A correct equation either CO or CO_{2} as product If not balanced but otherwise correct [1] ONLY
(b) (i) $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \quad \mathrm{NOT}$ word equation
(ii) (higher in furnace) no oxygen left
carbon dioxide reacts with carbon (to give carbon monoxide)
OR incomplete combustion of carbon
OR either equation gains both marks
$\mathrm{CO}_{2}+\mathrm{C}=2 \mathrm{CO}$ or $2 \mathrm{C}+\mathrm{O}_{2}=2 \mathrm{CO}$
OR carbon dioxide reacts
with carbon
(c) limestone + sand \rightarrow slag

OR calcium carbonate + silicon (IV) oxide \rightarrow calcium silicate (+ carbon dioxide)
For knowing that impurity is sand [1] ONLY
Accept calcium oxide and silicon oxide Accept lime
(d) (i) Cutlery or chemical plant or watches or utensils or surgical instruments or cars or sinks or aircraft or garden tools
(ii) nickel or chromium or molybdenum or niobium or titanium
(iii) blow air/oxygen through carbon becomes carbon dioxide carbon dioxide escapes as gas silicon and phosphorus become oxides calcium oxide or calcium carbonate forms slag
Any FOUR NOT blast furnace
(e) anode tin NOT impure time [1]
cathode iron or steel
tin salt or tin ions as electrolyte
NOT oxide or hydroxide or carbonate
TOTAL = 16
(a) (i) heat or roast [1]in air[1]
(ii) Either correct equation [2]$\mathrm{ZnO}+\mathrm{C}=\mathrm{Zn}+\mathrm{CO}$$2 \mathrm{ZnO}+\mathrm{C}=2 \mathrm{Zn}+\mathrm{CO}_{2}$Not balanced ONLY [1]NOT carbon monoxide as a reductant
(iii) bp of lead above $1400{ }^{\circ} \mathrm{C}$ it remainsbp of zinc below $1400^{\circ} \mathrm{C}$boils away or forms vapourAny TWO[2]
OR lead does not boil [1]
zinc boils [1]
(b) (i) making brass or any zinc containing alloy or galvanising [1] or sacrificial protection or batteries or roofs
(ii) lattice or layers of (positive) ionsdelocalised or free or mobile electronslayers/atoms/particles can slip[3]
(iii) different size atom NOT shape [1]
prevents layers from moving [1]
(c) (i) one involving lead change 2 [1]
cond because electrons are gained [1]or oxidation number less(ii) correct equation[2]$\mathrm{Zn}+2 \mathrm{Ag}^{+}=2 \mathrm{Ag}+\mathrm{Zn}^{2+}$not balanced ONLY [1]
TOTAL $=16$
(a) (i) wiring NOT good conductor pipes
utensils
roofs
electroplating
lightning conductor
bi-metallic strips
NOT coinage metal or any other use than involves an alloy
TWO from above
(ii) regular array
different sizes
delocalised or mobile or free electrons
(b) (i) copper deposited or mass increases
(ii) copper goes into solution or mass decreases
(iii) $\mathrm{Cu}^{2+}+2 \mathrm{e} \Rightarrow \mathrm{Cu}$
(iv) oxygen
sulphuric acid accept hydrogen sulphate [1]
(c) (ii) cells produce electricity or exothermic or change chemical energy into electrical energy
electrolysis uses it or endothermic or change electrical energy into chemical energy
(d) (i) $\mathrm{CuO}+\mathrm{C} \Longrightarrow \mathrm{Cu}+\mathrm{CO}$
or $2 \mathrm{CuO}+\mathrm{C} \Longrightarrow 2 \mathrm{Cu}+\mathrm{CO}_{2}$
or any other correct reductant - hydrogen or metal
(ii) Copper(II) hydroxide $=$ copper oxide + water accept symbols
(iii) $2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}=2 \mathrm{CuO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
unbalanced ONLY [1]
NOT word equation
TOT = 16)

